elcuidadodelasalude.org



Sirius receives U.S. patent for using SNP in Protein C gene

March 06, 2016

This finding further pointed to a signature profile associated with pathogenicity - the power of a virus-host interaction to cause disease.

"The relevance of long-non-protein coding RNAs to viral infections has not been systematically studied," said Dr. Paulene Quigley, program manager of the STRIDE center. " But now, with our ability to do whole-transcriptome analysis using next generation sequencing, we can systematically catalog and compare these long non-protein coding RNA in response to infection. What we are finding is very promising for infectious disease research."

These results, to the best of the scientists' knowledge, are the first to clearly demonstrate the widespread production and activation of long non-coding RNAs in response to virus infection. Their success opens new avenues for investigating the roles of long-non-protein coding RNAs in innate immunity to infection.

Exactly how the long-non-protein coding RNAs perform these functions is not yet known. It's possible that they might interact with protein complexes that modify gene expression during a viral infection. They might also modulate the host's response by regulating neighboring protein-coding genes.

"The functions of non-protein coding RNAs remain largely unexplored, but we now have the tools to study them," Katze said. "Such studies are critical, because non-protein coding RNAs may represent a whole new class of innate immunity signaling molecules, interferon-dependent regulators, or modulators of the host response during viral infection. They could also be a new class of biomarkers for infectious disease and for diagnostics development. Identifying similar profiles in response to lethal respiratory infections may even provide clues into the 'high-path' viral infection, one of the holy grails of virology. That's a big deal any way you slice it."

Highly pathogenic viruses causing life-threatening illnesses, like SARS or West Nile or pandemic flu, continue to emerge. Looking forward, a detailed knowledge of non-protein coding RNA regulation and function likely will be necessary for a full understanding of how viruses cause disease and how the body defends against or succumbs to viruses.

Source: University of Washington