Researchers publish findings that may lead to new standard of care for cervical cancer patients

December 26, 2015

Mitochondria are intimately tuned to the environment in which they reside and are built to respond quickly to fluctuations in the state of that environment. To characterize a relationship between mitochondria disorders and ASD, researchers from Atlanta identified a group of 28 children who had been diagnosed with both ASD and mitochondrial disease. The most common clinical observation in children with both ASD and mitochondria disorder was "hypotonia," or muscles with low tone, followed closely by "fatigue with activity." They also found that approximately 60 percent (17 of 28) of these children experienced a regressive form of ASD, a rate of regression that is over two times greater than what is observed in ASD in general. Notably, 12 of those 17 regressions occurred in conjunction with having suffered a fever within a two week period of the regression. However, this regression did not appear to be necessarily linked to vaccinations, as two-thirds of the children that regressed with fever had not received vaccination, and of those who did receive a vaccination, none regressed without also having a fever.

Although a small study, this report illuminates potentially useful new commonalities between children with both an ASD and mitochondria disorder, suggesting that children with mitochondrial disease may be at increased risk for autistic regression and that increased risk may be associated with some fever-response pathway. Although this paper did not establish the temporal relationship between fever and autistic regression, fever-induced regression is a well-known feature of metabolic disorders overall, and the study brings another angle to the already intriguing relationship of fever and autism. In 2008, researchers reported that some children with ASD actually improve around periods of fever, suggesting that subgroups of ASD exist in which the individuals react differently to fever.

"In light of this new data, it is clear we need more research into the body's complex cascade of metabolic and immune actions that accompany fever, how those relate to the biology of autism, and the appropriateness of fever management," commented Dr. Colamarino. "By showing that a subgroup of individuals with mitochondria disorders may be at risk for autistic regression, the publication highlights the continued need for enhanced awareness of the clinical signs of mitochondrial dysfunction as well."

Later Language Acquisition in Nonverbal Individuals with Autism - contrary to early beliefs, individuals with autism can acquire spoken language after age five

A common belief of many parents and clinicians is that, if a child with ASD has not developed communicative speech by 5 years of age, the prognosis for future development of speech is extremely poor. In 2009 scientists challenged this belief by conducting a comprehensive review of the research literature to search for reports of individuals who were reported to have acquired speech at age 5 or older. One-hundred sixty-seven such cases were identified, changing the way in which we view language development in individuals with ASD.

Early theories of brain development held that the period before age five represents a unique time in development during which language acquisition is possible, a critical period for language. Yet, recent longitudinal neuroimaging research has shown that the brain has a prolonged development, with major changes occurring during adolescence, and we now know that the capacity for neural generation extends even into adulthood. While the field of neuroscience has revised its notions of neuroplasticity and development accordingly, the field of ASD has held onto the notion of an early critical period for language acquisition. This paper published in the Journal of Cognitive and Behavioral Neurology, however, provides a very different perspective.

The authors identified in the published literature 167 individuals with ASD who used speech for the first time after age five. Many of these children had been offered language intervention based on either traditional or naturalistic applied behavior analysis during the elementary school years, with the intensity of intervention ranging from 30 minutes/week to 30 hour/week. Others had been taught sign language or provided with Picture Exchange Communication System (PECS) training, computer-based training, or speech-language therapy. Children who developed phrase speech were found to have been in treatment longer than those who only achieved single word speech. In virtually all cases, significant time and effort put into treatment was necessary for speech to develop. According to their records, many of these children learned to "use phrases," "answer simple questions," "make spontaneous requests," use "complete sentences," and "speak in spontaneous, complex sentences."

Although the age at which speech developed was variable (ranging from 6-12 years), once the child began speaking, subsequent improvement was often quite rapid. This suggests that achieving initial sound production and words can provide an important springboard for the development of subsequent speech. According to Dr. Colamarino, "This important paper offers hope for the many children who have not yet developed speech by age five, dispelling the belief that older individuals with ASD cannot respond well to speech interventions and providing a much more positive prognosis for individuals with ASD."

Language Regression in Autism - losing language skills is found to be specific to children with ASD

Similar to ASD, language learning difficulties are associated with children with Specific Language Impairment (SLI), developmental language disorder that is not associated with deafness, autism, or general developmental delay. Overlapping behaviors and challenges have been shown in children with ASD and those with SLI, making people wonder what features of language impairment, if any, are specific to autism. An important new study was published in 2009 investigating language development in children with ASD and SLI, which showed that the loss of language skills is highly specific to children with ASD.

Published in the Journal of Child Psychology and Psychiatry, the study included 368 children with ASD and SLI from the United Kingdom. Parents were interviewed using the Autism Diagnostic Interview - Revised, which provided a detailed developmental history of the child and included information on loss of language skills (i.e. the milestone of acquiring either single words or short phrases was reached but then language development plateaued or was lost). The authors found that whereas 15 percent of children with ASD showed loss of language, only 1% of children with SLI showed similar patterns of loss. Curiously, they found that those children with ASD who later lost language skills acquired either single words or short phrases significantly earlier than those children with ASD who showed no signs of language loss.

The study reveals a surprisingly strong specificity for language regression and ASD, perhaps indicating that even though language impairment is common to both ASD and SLI, they may involve different biological mechanisms. "Most importantly, these findings have immediate clinical implications," explained Dr. Colamarino, "suggesting that the presence or absence of language regression can be useful information in the differential diagnosis of ASD versus SLI for children presenting to their doctors with language difficulties."

Association of Family History of Autoimmune Disease and Autism Spectrum Disorders - use of large Danish database adds another link between autism and the immune system

A 2009 study published in Pediatrics used the nationwide psychiatric health registry in Denmark to re-examine the potential link between autoimmune diseases, particularly in the mother, and ASD. Using a sample size over ten times larger than previously studied, their findings confirmed an association between autoimmune disease and ASD.

Multiple research approaches have been used throughout the years to uncover a potential relationship between immune function and autism, and while producing very intriguing data, the size of these studies has been limited and the findings have not always been replicated. This study utilized the nationwide health care system in Denmark to focus on the relationship between familial autoimmune diseases and ASD, including virtually all of the children born in the country between 1993 and 2004 (over 680,000 children). After locating those with diagnoses of an ASD, the authors used other databases to track down information on the presence or absence of twenty-six different autoimmune disorders in the parents or unaffected siblings. Their results confirmed previously reported links between familial type 1 diabetes and ASD, as well as between rheumatoid arthritis and ASD, discovering for the first time that rheumatoid arthritis in the mother, but not the father, is associated with increased risk for ASD. The authors also uncovered the first association between ASD and untreated celiac disease in mothers.

By using one of the largest and most comprehensive national health databases, this study provides additional clues regarding the association between immune system dysregulation and ASD. The associations found with specific autoimmune diseases and whether the disease is present in mothers versus fathers provide important clues about the biological mechanisms that may lead to autism. For instance, because the risk of ASD was increased only when the mothers, but not the fathers, had rheumatoid arthritis, the authors hypothesize that the link to autism may be due to exposure to maternal antibodies secreted during pregnancy, or other alterations within the prenatal environment. A relatively new focus in the search for the causes of ASD is the complex interaction between the immune function of a mother during pregnancy and the biological impact this may have on the early brain development of her child. In contrast, the association between type 1 diabetes and ASD was found if either parent was diabetic indicating that this link may be explained by a genetic factor that is related to both diabetes and autism. "This study suggests that looking at the associations with familial autoimmunity may be used to narrow down the search for autism risk factors, both genetic and environmental," said Dr. Colamarino.

"Not only does this research provide insights into causes and treatments, it provides a scientific context to prioritize funding for further research" remarked Dr. Dawson. "Autism research is a slow and incremental process. We see that epidemiological, genetic and environmental discoveries proceed simultaneously, with findings in one, advancing the other. To proceed in all areas of autism research concurrently requires a tremendous level of funding support." Autism Speaks has committed more than $141 million to date to fund research into the causes, diagnosis and treatment for autism through 2014. It is currently funding research into potential genetic and environmental risk factors involved with autism, identification of the biological pathways that underlie autism, as well as improved methods of early diagnosis and new treatment models." Read more about Autism Speaks' science portfolio here and the annual letter from the Chief Science Officer here.

Further Dr. Dawson explained that money spent on research is well spent. According to a 2007 Harvard School of Public Health study, it costs approximately $35 billion each year to care for people with autism - a number that has clearly increased over the past two years with the rising prevalence among the youngest people with ASD and a growing demand for housing, work skills and opportunities, healthcare, and other services that simply do not exist for adults with ASD. In FY 2008, total federal spending on autism research was just $177 million, expected to increase to $282 million in FY 2009 due to a one-time infusion of $89 million in stimulus spending. During his campaign, President Obama committed to $1 billion of annual federal spending on autism by 2012. In October 2009, the President identified autism as one of his administration's top three public health priorities. Increased funding for autism research that defines causes and leads to effective treatments will clearly offset the growing cost to the public associated with caring and services for the still increasing number of individuals with autism.

Source: Autism Speaks