CSI Laboratories to expand new diagnostic laboratory in Alpharetta

February 20, 2016

Ironically, the variation in PRDM9 is due to a minisatellite within the gene itself. Sir Alec said: 'I've come full circle - starting out with minisatellites to develop DNA fingerprinting, and arriving at a gene containing a minisatellite that plays a key role in driving all kinds of human DNA diversity, including variation at minisatellites. An intriguing possibility is that it is even driving its own evolution!'

Sir Alec believes the research, along with that of others working in the field, will inevitably further scientists' ability to understand the basic processes that make us all genetically unique, as well as defining an entirely new class of genetic risk factor for numerous disease-causing DNA rearrangements that can arise when recombination goes wrong.

These findings also provide a neat solution to one great puzzle of recombination hotspots - namely that they appear and disappear rapidly during evolution. Sir Alec said 'We've shown that hotspots have a strange propensity for self-destruction, so how can they possibly exist? The PRDM9 minisatellite gives the answer - it evolves rapidly, like any other unstable minisatellite, and keeps churning out variants that can trigger new hotspots, replenishing those that have committed suicide. A totally crazy mechanism to ensure that recombination keeps going, but typical of the weird solutions that evolution can throw up'.

Source: University of Leicester